TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway.
نویسندگان
چکیده
A subset of chromosomal translocations that participate in leukemia involve activated tyrosine kinases. The ets transcription factor, TEL, undergoes translocations with several distinct tyrosine kinases including JAK2. TEL-JAK2 transforms cell lines to factor independence, and constitutive tyrosine kinase activity results in the phosphorylation of several substrates including STAT1, STAT3, and STAT5. In this study we have shown that TEL-JAK2 can constitutively activate the phosphatidylinositol 3'-kinase (PI 3'-kinase) signaling pathway. The regulatory subunit of PI 3'-kinase, p85, associates with TEL-JAK2 in immunoprecipitations, and this was shown to be mediated by the amino-terminal SH2 domain of p85 but independent of a putative p85-binding motif within TEL-JAK2. The scaffolding protein Gab2 can also mediate the association of p85. TEL-JAK2 constitutively phosphorylates the downstream substrate protein kinase B/AKT. Importantly, the pharmacologic PI 3'-kinase inhibitor, LY294002, blocked TEL-JAK2 factor-independent growth and phosphorylation of protein kinase B. However, LY294002 did not alter STAT5 tyrosine phosphorylation, indicating that STAT5 and protein kinase B activation mediated by TEL-JAK2 are independent signaling pathways. Therefore, activation of the PI 3'-kinase signaling pathway is an important event mediated by TEL-JAK2 chromosomal translocations.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملElectroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملNEOPLASIA Fusion of the ets Transcription Factor TEL to Jak 2 Results in Constitutive Jak - Stat Signaling
To study constitutive Janus kinase signaling, chimeric proteins were generated between the pointed domain of the ets transcription factor TEL and the cytosolic tyrosine kinase Jak2. The effects of these proteins on interleukin-3 (IL-3)– dependent proliferation of the hematopoietic cell line, Ba/F3, were studied. Fusion of TEL to the functional kinase (JH1) domain of Jak2 resulted in conversion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 35 شماره
صفحات -
تاریخ انتشار 2001